7th Grade Science


      a. Matter and Properties


      b. Quarter: One


II.   Unit 1: Properties of Matter  Unit Length 4 weeks              


  1. Unit #1 Introduction:

       During this unit, students will realize that matter is anything that has mass and takes up space. That element’s are the basic building blocks of matter and can be identified by their physical and chemical properties.  Furthermore, students will use the periodic table to gather information about the properties of oxygen, hydrogen, carbon, iron, and aluminum. Students will then be introduced to measurement skills needed to make observations and gather information and use mathematical operations to analyze and interpret data. In addition, students will identify questions to be answered through scientific investigation.



      b. Standards for Unit #1:

CT State Grade Level Expectations (Draft)

GRADE-LEVEL CONCEPT  1:u Mixtures are made of combinations of elements and/or compounds, and they can be separated by using a variety of physical means.



1.     Everything is made of matter.  Matter has two fundamental properties: it has weight (mass) and it takes up space (volume).

2.     All matter has a variety of properties, some of which are characteristic of the substance.  Characteristic properties do not depend on the amount of the substance (as mass and volume do).  Properties such as magnetic attraction, conductivity, density, pH, boiling point and solubility are characteristic properties that can be used to identify substances. 

3.     Solids, liquids or gases can be combined to form mixtures.  In a mixture, each substance keeps its individual properties.  In some mixtures, each of the components can be seen (for example, rocks, twigs, insects and leaves are visible components of soil); in other mixtures, the individual substances blend so well that they appear to be a single substance (for example, oxygen, nitrogen and carbon dioxide are mixed together to form air).

4.     Mixtures can be separated using different methods, depending on the physical properties of the component substances.  Filtering, evaporating, floating/settling, dissolving, and using magnets are all methods for separating mixtures based on the properties of their components. 

5.     Solutions are mixtures that appear to be single substances because particles have dissolved and spread evenly throughout the mixture.  Not all separation methods are effective for separating the components of solutions. 

GRADE-LEVEL CONCEPT 2: u Pure substances can be either elements or compounds, and they cannot be broken down by physical means.


1.     All matter is made of particles called atoms that are too small to be seen without special magnification.  For example, a gold ring can be broken into smaller and smaller pieces until the pieces are no longer visible.

2.     All matter is made of different combinations of about 100 pure substances called elements.   The smallest particle of an element is an atom.  Iron is an example of an element that is made up of only iron atoms.

3.     Each element has distinct characteristic properties.  The Periodic Table of Elements is used to organize elements based on properties such as their reactivity, state of matter, conductivity or density.  Element names are represented by letter symbols on the Periodic Table.

4.     Some elements, such as iron (“Fe”) and aluminum (“Al”), are classified as metals because they have similar properties.  Individual metallic elements have distinct characteristic properties (for example, sodium (“Na”) is a light, soft metal that is nonmagnetic, while iron is a magnetic metal that is denser than sodium and aluminum).

5.     Some elements, such as carbon (“C”), hydrogen (“H”), oxygen (“O”) and chlorine (“Cl”), are classified as nonmetals.  Carbon is a nonmetal that occurs in several different forms (graphite, diamond, and coal), each of which has distinct properties.  Hydrogen and oxygen are nonmetals that are similar in that they are both gases; however, each gas has distinct characteristic properties.

6.     Atoms can combine chemically to make a molecule of a new substance with new properties called a compound. A molecule is the smallest part of a compound and is made of atoms of different elements in specific amounts.  Unlike mixtures, compounds cannot be separated using the physical properties of the component elements.

7.     Compounds have different properties than the individual elements of which they are made.  For example, table salt (NaCl) is a compound with different characteristic properties than the elements sodium and chlorine from which it is made; water (H20) is a compound with different characteristic properties than the elements hydrogen and oxygen from which it is made.  Different amounts of the same elements can produce compounds with different properties (for example, water (H20) and hydrogen peroxide (H202).

8.     In a chemical reaction, atoms can rearrange to form different molecules of new compounds. During photosynthesis, carbon dioxide (CO2) is taken in by green plants and combined with water (H2O). The carbon, hydrogen and oxygen atoms rearrange to make two new compounds: glucose (made of atoms of carbon, oxygen, and hydrogen) and oxygen gas (made of atoms of oxygen).

9.     In a chemical reaction, the same amount of matter (mass) is present at the start and the end, since the atoms are not created or destroyed but simply rearrange.


SCIENTIFIC LITERACY TERMINOLOGY:  Characteristic property, mass, weight, volume, density, solubility, boiling point, mixture, solution, particle, atom, element, molecule, compound, metal, non-metal, chemical reaction          


      c. Essential Questions:

1. How can matter have mass and volume?

2. What is the difference between physical and chemical properties?

3. What are the basic elements?

4. How can elements have different properties?

5. How small is an atom?


      d. Essential Content/Concepts:

1.  Matter is anything that has mass and takes up space.

2.  All matter has both physical and chemical properties.

3.  The basic building blocks of matter are called elements.

4.  Elements are represented by a symbol.

5.  The smallest particle of element that has the properties of the element is called an


6.  Elements are only made up of one type of atom.

7.  The atoms of different elements, such as hydrogen, oxygen, iron, and aluminum, have different properties. 




      e. Essential Skills:

1.  Use appropriate scientific tools to measure mass and volume in metric units.

2.  Use mathematical operations to calculate volume and density.

3.  Use the periodic table to gather information about the properties of common elements.

4.  Identify questions that can be answered through scientific investigation.



 f. Vocabulary

1. Matter                                                      10. Periodic Table of the Elements

2.  Mass                                                       11. Triple Beam Balance

3. Volume                                                    12. Graduated Cylinder

4.  Density                                                    13. Meter Stick

5.  Length

6. Atoms

7.  Elements

8.  Physical properties

9.  Chemical properties


g. Science Misconceptions

1. A gas does not have mass or take up space.

2. Large objects fall faster then smaller objects.

3. A “problem” is something that is done wrong in an experiment.



1.  Labs:

Matter and Properties

a. Measuring Length

b. Determining Mass and Volume

c. Making Sense of Density (Science Explorer, Chemical Building Blocks, teaching resources)

d. Metric Olympics

Measurement Notes, Measurement Chart


2. Reading for information

a. Measuring, Estimating Measurements, and Metric System (Unlocking Science Process Skills) pp. 40-51

b. Gold’s Glittery Rewards

c. Navy Relic


3. Web or Library research:

a. Element Project/Flip book (To identify properties of hydrogen, oxygen, iron, and aluminum.)

b. Metric Poster


Multimedia Presentations:

Elements, The (United Streaming Videos)

IV. Significant Tasks (ST) #/Title:

Significant Task 1: Post-it Lab (Lab packet)


      a. Significant Task Introduction:



      b. Length/Timing: End of Unit One


      c. Essential Questions:

          1. How are variables identified?

          2. Why should procedures be detailed?

          3. What information belongs in a data table?


      d.  Assessment Tools (AT):

           1. Lab




            Readings, Texts, Materials, Videos



Example Assessment Questions: